EUROPEAN COMMISSION

HORIZON 2020 PROGRAMME FUEL CELLS AND HYDROGEN JOINT UNDERTAKING (FCH 2 JU) TOPIC H2020-JTI-FCH-2015-1 Improved electrolysis for distributed hydrogen production

GA No. 700008

High Performance PEM Electrolyser for Cost-effective Grid Balancing Applications

HPEM2GAS - Deliverable report

D5.1 Fact based assessment of a state of the art PEM Electrolyser

Deliverable No.	HPEM2GAS D5.1	
Related WP	5	
Deliverable Title	Fact based assessment of a state of the art PEM Electrolyser	
Deliverable Date	2017-09-30	
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Author(s)	Daniel Greenhalgh (ITM)	
Checked by	WP leader (ITM)	2017-09-15
Reviewed by (if applicable)	n.a.	
Approved by	Antonino Aricò (CNR-ITAE) - Coordinator	2017-09-20
Status	Final version	2017-09-20

Disclaimer/ Acknowledgment

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the HPEM2GAS Consortium. Neither the HPEM2GAS Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the HPEM2GAS Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the FCH JU and European Union's Horizon 2020 research and innovation programme under grant agreement No 700008. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY

The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.

Publishable summary

The next generation water electrolysers must achieve better dynamic behaviour (rapid start-up, fast response, wider load and temperature ranges) to provide superior grid-balancing services and thus address the steep increase of intermittent renewables interfaced to the grid. The HPEM2GAS project aims to develop a low cost PEM electrolyser optimised for grid management through both stack and balance of plant innovations, culminating in a six month field test of an advanced 180 (nominal) - 300 kW (transient) PEM electrolyser. The electrolyser developed will implement an advanced balance of plant and improved stack design and components, which will contribute significantly to reducing the electrolyser CAPEX and OPEX costs.

As part of the project, a review of a state of the art PEM water electrolyser manufactured by ITM Power, already deployed in the field has been conducted in order to understand the limitations of the system and in particular its balance of plant (BoP), to provide a benchmark with which to measure BoP innovations within the HPEM2GAS project against. The review covers a number of areas including; load behaviour, performance, efficiencies and manufacturing and maintenance costs.